Share this
What is troposcatter communication?
by Christopher Trick on May 16, 2023 9:02:09 AM
When traditional communication infrastructure fails, troposcatter communication becomes a crucial technology for maintaining reliable communication in remote and disaster-prone areas.
In this blog, you'll learn more about what troposcatter communication is, how it works, various use cases, and where Trenton's solutions come into play.
What is troposcatter communication?
Troposcatter, also known as tropospheric scatter, is a form of radio communication that uses the scattering of radio waves in the Earth's troposphere (the lowest layer of the atmosphere) to establish communication over long distances.
In troposcatter communication, high-frequency radio waves are transmitted from one point to another by reflecting off of the irregularities and variations in the density of the troposphere, such as atmospheric turbulence, moisture, and temperature gradients.
This scattering effect allows the radio waves to propagate beyond the horizon and over distances that would normally be obstructed by the curvature of the Earth and other obstacles.
Troposcatter communication can be used for military and civilian applications, such as long-range communication for remote areas, communication in disaster zones where other forms of communication are not possible, and for surveillance and intelligence gathering.
However, troposcatter communication has some limitations, such as the need for high power and large antenna systems, and susceptibility to interference and fading due to atmospheric conditions.
How does troposcatter communication work?
The troposphere is the lowermost layer of the Earth's atmosphere, extending up to a height of about 7-20 km, depending on the location and weather conditions.
Troposcatter communication works by using a high-frequency radio signal to create a "scatter field" in the troposphere. This field consists of millions of small "scattering centers," such as water droplets, dust particles, and atmospheric gases, that reflect and scatter the radio signal in all directions.
The radio signal is transmitted from one point to another by directing the signal towards the troposphere at a specific angle. The signal is then scattered off the scattering centers in the troposphere and received by a receiver located at the destination point.
To ensure reliable communication, the troposcatter signal must be transmitted at a high power and a specific frequency range (usually between 1 and 10 GHz). The signal must also be transmitted at a specific angle, typically between 2 and 5 degrees above the horizon, to ensure that it is scattered effectively.
What are the types of troposcatter applications, and how do they differ?
There are two primary types of troposcatter applications: point-to-point and point-to-multipoint.
- Point-to-Point Troposcatter: Point-to-point troposcatter is a communication system that establishes a direct link between two fixed points, such as two military bases, over a distance of up to 300 miles. This type of system requires a high degree of accuracy in the antenna alignment, and it typically operates at a frequency range of 1 to 20 GHz. The main advantage of point-to-point troposcatter is that it can transmit data at high rates over long distances without relying on satellite technology.
- Point-to-Multipoint Troposcatter: Point-to-multipoint troposcatter is a communication system that enables one transmitter to communicate with multiple receivers spread over a large geographical area. This type of system operates at a lower frequency range of 200 to 400 MHz and can cover distances of up to 500 miles. Point-to-multipoint troposcatter systems are commonly used in remote regions where traditional communication infrastructure, such as telephone lines, cellular towers, and satellite links, are not available or not practical.
Troposcatter Communication Use Cases
Military Use Cases
Battlefield Communication
In military operations, effective communication is crucial for coordination, command, and control. However, traditional line-of-sight communication methods like radios and satellites face challenges in complex terrain or urban environments where obstructions block signals.
The main challenge is to establish reliable communication links in non-line-of-sight conditions, such as forests, mountains, or urban canyons, where direct communication is difficult or impossible.
Troposcatter communications leverage the scattering of radio waves in the troposphere to provide a reliable method for long-range communication in non-line-of-sight scenarios.
By bouncing radio signals off the troposphere, troposcatter systems can overcome obstructions and achieve reliable communications over distances of up to hundreds of kilometers.
Forward Operating Base Connectivity
Forward Operating Bases (FOBs) are strategically located military outposts that require continuous and secure communication with command centers and other FOBs. These bases are often located in remote, rugged areas or dense vegetation, making traditional communication methods unreliable.
Establishing reliable and secure communication links between FOBs and command centers is crucial for effective coordination, situational awareness, and logistical support. However, the challenging terrain, distance, and lack of infrastructure pose significant challenges.
Troposcatter communications offer an effective solution to address the connectivity challenges faced by FOBs.
By utilizing the scattering of radio waves in the troposphere, troposcatter systems enable reliable long-range communication even in non-line-of-sight conditions. This technology allows FOBs to establish robust and secure communication links, facilitating seamless coordination, real-time intelligence sharing, and efficient logistical support in remote and challenging environments.
Critical Infrastructure Use Cases
Oil and Gas Pipeline Monitoring
Monitoring and controlling oil and gas pipelines is vital for ensuring efficient operations, detecting leaks, and preventing environmental disasters. However, pipelines often traverse remote areas with limited infrastructure and challenging environmental conditions.
Establishing continuous and reliable communication over long distances in remote areas is a significant challenge for oil and gas pipeline monitoring. The lack of existing communication infrastructure and the need for real-time data transmission add to the complexity.
Troposcatter communications offer a reliable and cost-effective solution for long-range communication in remote pipeline monitoring applications.
By utilizing tropospheric scattering, troposcatter systems can establish communication links over hundreds of kilometers without the need for intermediate relay stations or line-of-sight connections. This enables real-time data transmission and remote control, improving the efficiency and safety of pipeline operations.
Disaster Response and Recovery
During natural disasters or emergencies, communication is vital for effective response and recovery operations. Disasters often disrupt traditional communication infrastructure, leaving affected areas isolated and in need of reliable communication links.
Establishing communication networks quickly in disaster-stricken areas, where existing infrastructure may be damaged or destroyed, poses a significant challenge. Line-of-sight communication methods may not be feasible due to debris, structural damage, or limited power availability.
Troposcatter communications can provide a reliable alternative for establishing communication links in disaster response and recovery scenarios.
By leveraging tropospheric scattering, troposcatter systems can bypass damaged infrastructure and create long-range communication networks rapidly. This enables emergency responders to coordinate efforts, share information, and provide essential services in areas where traditional communication methods are disrupted.
Where does Trenton Systems come into play?
At Trenton Systems, our ruggedized, high-performance computing solutions provide the infrastructure necessary for troposcatter communication utilizing single or multiple pieces of hardware in the harshest of environments.
With high core count CPUs and high-end GPUs, our systems can process and analyze massive amounts of data from sensors, radars, and user devices in real-time at the tactical edge.
Data is then quickly stored and retrieved with high-speed DDR5 memory and FIPS 140-2/FIPS 140-3-certified self-encrypting drives to increase situational awareness and enhance bidirectional communication while thwarting the most sophisticated of cyberattacks.
Additionally, our systems can provide control and monitoring capabilities as well as network resource optimization to ensure maximum operational efficiency as data travels between two or more points.
Final thoughts
By utilizing the scattering of radio waves in the troposphere, troposcatter communication overcomes the limitations of traditional communication methods and provides reliable connectivity in challenging environments.
This technology finds significant applications in both military and civilian sectors, such as battlefield communication, forward operating base connectivity, oil and gas pipeline monitoring, and disaster response.
Companies like Trenton Systems empower troposcatter communication in the harshest of environments with enhanced computing, intelligence, and networking capabilities, contributing to effective and secure long-range communication.
Want to learn more about how we can help you craft a standard or custom solution for troposcatter communication? Just reach out to our team anytime here.
We'd be more than happy to help. 🙂
Share this
- High-performance computers (42)
- Military computers (38)
- Rugged computers (32)
- Cybersecurity (25)
- Industrial computers (25)
- Military servers (24)
- MIL-SPEC (20)
- Rugged servers (19)
- Press Release (17)
- Industrial servers (16)
- MIL-STD-810 (16)
- 5G Technology (14)
- Intel (13)
- Rack mount servers (12)
- processing (12)
- Computer hardware (11)
- Edge computing (11)
- Rugged workstations (11)
- Made in USA (10)
- Partnerships (9)
- Rugged computing (9)
- Sales, Marketing, and Business Development (9)
- Trenton Systems (9)
- networking (9)
- Peripheral Component Interconnect Express (PCIe) (7)
- Encryption (6)
- Federal Information Processing Standards (FIPS) (6)
- GPUs (6)
- IPU (6)
- Joint All-Domain Command and Control (JADC2) (6)
- Server motherboards (6)
- artificial intelligence (6)
- Computer stress tests (5)
- Cross domain solutions (5)
- Mission-critical servers (5)
- Rugged mini PCs (5)
- AI (4)
- BIOS (4)
- CPU (4)
- Defense (4)
- Military primes (4)
- Mission-critical systems (4)
- Platform Firmware Resilience (PFR) (4)
- Rugged blade servers (4)
- containerization (4)
- data protection (4)
- virtualization (4)
- Counterfeit electronic parts (3)
- DO-160 (3)
- Edge servers (3)
- Firmware (3)
- HPC (3)
- Just a Bunch of Disks (JBOD) (3)
- Leadership (3)
- Navy (3)
- O-RAN (3)
- RAID (3)
- RAM (3)
- Revision control (3)
- Ruggedization (3)
- SATCOM (3)
- Storage servers (3)
- Supply chain (3)
- Tactical Advanced Computer (TAC) (3)
- Wide-temp computers (3)
- computers made in the USA (3)
- data transfer (3)
- deep learning (3)
- embedded computers (3)
- embedded systems (3)
- firmware security (3)
- machine learning (3)
- Automatic test equipment (ATE) (2)
- C6ISR (2)
- COTS (2)
- COVID-19 (2)
- Compliance (2)
- Compute Express Link (CXL) (2)
- Computer networking (2)
- Controlled Unclassified Information (CUI) (2)
- DDR (2)
- DDR4 (2)
- DPU (2)
- Dual CPU motherboards (2)
- EW (2)
- I/O (2)
- Military standards (2)
- NVIDIA (2)
- NVMe SSDs (2)
- PCIe (2)
- PCIe 4.0 (2)
- PCIe 5.0 (2)
- RAN (2)
- SIGINT (2)
- SWaP-C (2)
- Software Guard Extensions (SGX) (2)
- Submarines (2)
- Supply chain security (2)
- TAA compliance (2)
- airborne (2)
- as9100d (2)
- chassis (2)
- data diode (2)
- end-to-end solution (2)
- hardware security (2)
- hardware virtualization (2)
- integrated combat system (2)
- manufacturing reps (2)
- memory (2)
- mission computers (2)
- private 5G (2)
- protection (2)
- secure by design (2)
- small form factor (2)
- software security (2)
- vRAN (2)
- zero trust (2)
- zero trust architecture (2)
- 3U BAM Server (1)
- 4G (1)
- 4U (1)
- 5G Frequencies (1)
- 5G Frequency Bands (1)
- AI/ML/DL (1)
- Access CDS (1)
- Aegis Combat System (1)
- Armed Forces (1)
- Asymmetric encryption (1)
- C-RAN (1)
- COMINT (1)
- CPUs (1)
- Cloud-based CDS (1)
- Coast Guard (1)
- Compliance testing (1)
- Computer life cycle (1)
- Containers (1)
- D-RAN (1)
- DART (1)
- DDR5 (1)
- DMEA (1)
- Data Center Modular Hardware System (DC-MHS) (1)
- Data Plane Development Kit (DPDK) (1)
- Defense Advanced Research Projects (DARP) (1)
- ELINT (1)
- EMI (1)
- EO/IR (1)
- Electromagnetic Interference (1)
- Electronic Warfare (EW) (1)
- FIPS 140-2 (1)
- FIPS 140-3 (1)
- Field Programmable Gate Array (FPGA) (1)
- Ground Control Stations (GCS) (1)
- Hardware-based CDS (1)
- Hybrid CDS (1)
- IES.5G (1)
- ION Mini PC (1)
- IP Ratings (1)
- IPMI (1)
- Industrial Internet of Things (IIoT) (1)
- Industry news (1)
- Integrated Base Defense (IBD) (1)
- LAN ports (1)
- LTE (1)
- Life cycle management (1)
- Lockheed Martin (1)
- MIL-S-901 (1)
- MIL-STD-167-1 (1)
- MIL-STD-461 (1)
- MIL-STD-464 (1)
- MOSA (1)
- Multi-Access Edge Computing (1)
- NASA (1)
- NIC (1)
- NIC Card (1)
- NVMe (1)
- O-RAN compliant (1)
- Oil and Gas (1)
- Open Compute Project (OCP) (1)
- OpenRAN (1)
- P4 (1)
- PCIe card (1)
- PCIe lane (1)
- PCIe slot (1)
- Precision timestamping (1)
- Product life cycle (1)
- ROM (1)
- Raytheon (1)
- Remotely piloted aircraft (RPA) (1)
- Rugged computing glossary (1)
- SEDs (1)
- SIM Card (1)
- Secure boot (1)
- Sensor Open Systems Architecture (SOSA) (1)
- Small form-factor pluggable (SFP) (1)
- Smart Edge (1)
- Smart NIC (1)
- SmartNIC (1)
- Software-based CDS (1)
- Symmetric encryption (1)
- System hardening (1)
- System hardening best practices (1)
- TME (1)
- Tech Partners (1)
- Total Memory Encryption (TME) (1)
- Transfer CDS (1)
- USB ports (1)
- VMEbus International Trade Association (VITA) (1)
- Vertical Lift Consortium (VLC) (1)
- Virtual machines (1)
- What are embedded systems? (1)
- Wired access backhaul (1)
- Wireless access backhaul (1)
- accredidation (1)
- aerospace (1)
- air gaps (1)
- airborne computers (1)
- asteroid (1)
- authentication (1)
- autonomous (1)
- certification (1)
- cognitive software-defined radios (CDRS) (1)
- command and control (C2) (1)
- communications (1)
- cores (1)
- custom (1)
- customer service (1)
- customer support (1)
- data linking (1)
- data recording (1)
- ethernet (1)
- full disk encryption (1)
- hardware monitoring (1)
- heat sink (1)
- hypervisor (1)
- in-house technical support (1)
- input (1)
- integrated edge solution (1)
- international business (1)
- licensed spectrum (1)
- liquid cooling (1)
- mCOTS (1)
- microelectronics (1)
- missile defense (1)
- mixed criticality (1)
- moving (1)
- multi-factor authentication (1)
- network slicing (1)
- neural networks (1)
- new headquarters (1)
- next generation interceptor (1)
- non-volatile memory (1)
- operating system (1)
- output (1)
- outsourced technical support (1)
- post-boot (1)
- pre-boot (1)
- private networks (1)
- public networks (1)
- radio access network (RAN) (1)
- reconnaissance (1)
- secure flash (1)
- security (1)
- self-encrypting drives (SEDs) (1)
- sff (1)
- software (1)
- software-defined radios (SDRs) (1)
- speeds and feeds (1)
- standalone (1)
- storage (1)
- systems (1)
- tactical wide area networks (1)
- technical support (1)
- technology (1)
- third-party motherboards (1)
- troposcatter communication (1)
- unlicensed spectrum (1)
- volatile memory (1)
- vpx (1)
- zero trust network (1)
- November 2024 (1)
- October 2024 (1)
- August 2024 (1)
- July 2024 (1)
- May 2024 (1)
- April 2024 (3)
- February 2024 (1)
- November 2023 (1)
- October 2023 (1)
- July 2023 (1)
- June 2023 (3)
- May 2023 (7)
- April 2023 (5)
- March 2023 (7)
- December 2022 (2)
- November 2022 (6)
- October 2022 (7)
- September 2022 (8)
- August 2022 (3)
- July 2022 (4)
- June 2022 (13)
- May 2022 (10)
- April 2022 (4)
- March 2022 (11)
- February 2022 (4)
- January 2022 (4)
- December 2021 (1)
- November 2021 (4)
- September 2021 (2)
- August 2021 (1)
- July 2021 (2)
- June 2021 (3)
- May 2021 (4)
- April 2021 (3)
- March 2021 (3)
- February 2021 (8)
- January 2021 (4)
- December 2020 (5)
- November 2020 (5)
- October 2020 (4)
- September 2020 (4)
- August 2020 (6)
- July 2020 (9)
- June 2020 (11)
- May 2020 (13)
- April 2020 (8)
- February 2020 (1)
- January 2020 (1)
- October 2019 (1)
- August 2019 (2)
- July 2019 (2)
- March 2019 (1)
- January 2019 (2)
- December 2018 (1)
- November 2018 (2)
- October 2018 (5)
- September 2018 (3)
- July 2018 (1)
- April 2018 (2)
- March 2018 (1)
- February 2018 (9)
- January 2018 (27)
- December 2017 (1)
- November 2017 (2)
- October 2017 (3)
No Comments Yet
Let us know what you think