Share this
What is a CPU (Central Processing Unit)?
by Noah Buchanan on Jun 22, 2022 10:06:46 AM
Computers have an enormous number of jobs that they complete even within a matter of seconds, prompting the need for a central processing unit (CPU) that helps manage and coordinate these tasks.
In this blog, you'll learn what a CPU is and how it operates as the central component of a computer to ensure it operates at maximum efficiency.
What is a CPU, and what is its purpose?
A CPU (central processing unit, or simply, processor) is the main chip in a computer that is responsible for carrying out all of its tasks.
Often referred to as the "brain," the processor tells all of the other components in a computer what to do based on the instructions it is given by the software running on that computer.
CPUs exist in lots of devices other than traditional computers like smartphones, TVs, and tablets.
Where is the CPU located?
In a computer, the CPU is generally found at the center of the system directly connected to the motherboard. It is usually under a cooling fan or heat sink, as the CPU would become damaged from overheating without a proper cooling mechanism. Socketed CPUs can be removed and replaced as needed over time.
In many modern applications, the CPU may be integrated directly onto a single integrated circuit with memory interfaces and input/output devices, becoming a system-on-a-chip (SoC). This is particularly common in edge and mobile solutions.
What are the main parts of a CPU?
There are three main parts of a CPU: the control unit (CU), the arithmetic logic unit, (ALU), and the registers.
- Control Unit (CU): This regulates the flow of input and output (I/O). It fetches instructions from the main memory and decodes into specific commands.
- Artithmetic Logic Unit (ALU): This is where all of the processing happens, including mathematical calculations and logical operations for decisions making, like comparing data.
- Registers: This is an extremely fast memory location. The data and instructions that are currently being processed during the fetch-execute cycle are stored there for quick access by a processor.
How does a CPU work?
A CPU can execute millions of instructions per second, but it can only carry out one instruction at a time.
It first receives some type of input, typically from an input device--such as a monitor display screen, a keyboard, a mouse, or a microphone--from an application/system software program, like your web browser or operating system, or from memory.
It is then in charge of four tasks: fetching, decoding, executing, and storing. (More on that in the next section.)
Finally, there is an output of some kind, such as printing something to the screen.
This process is called the fetch-execute cycle, and it happens millions of times per second.
What are the main tasks of a CPU?
Let's take a look at a CPU's four primary tasks:
- Fetching includes getting instructions from memory, so the CPU knows how to handle the input and knows the corresponding instructions for that particular input data it received. Specifically, it looks for the address of the corresponding instruction and forwards the request to the RAM (random access memory). The CPU and the RAM constantly work together in a process called "reading from memory."
- Decoding involves translating the instructions into a form the CPU can understand, which is machine language.
- Executing means carrying out the given instructions.
- Storing is the result of the execution back to memory for later retrieval if and when requested. This is also called writing to memory.
Key CPU Terms
Clock speed
Expressed in gigahertz (GHz), clock speed is a rough indication of how many calculations a processor can make each second. The higher the clock speed, the more calculations the processor can perform.
Threads
A thread is a virtual component that helps deliver workloads to the CPU. The more threads you have, the faster workloads are delivered and the easier they are organized, leading to increased efficiency.
Threads are vital to a computer's functionality because they determine how many tasks a computer can perform at any given time.
The number of threads you have depends upon the number of cores in your CPU. Each core may have two threads depending on the specific processor and if hyperthreading is supported. For example, a dual core processor may have four threads and a processor with four cores may have eight threads.
Hyperthreading
Many modern CPUs support a technology called hyperthreading.
Hyperthreading works by making a single physical core appear as multiple physical cores, allowing the operating system (OS) take advantage of concurrent instruction processing and enhancing the computational power.
Cores
Think of a human body: if threads are the hands, then cores are the mouth.
Cores are separate physical devices within the main CPU chip that act as independent processors, taking data from the threads and performing computational tasks. Software applications can be written so that multiple cores can work concurrently on processing program data, generally referred to as multithreading.
How quickly a CPU can process data is affected by the number of available cores. The more cores a CPU has, the greater the computational power it has. As a result, more tasks can be run and completed simultaneously.
For example, a dual-core CPU has two cores, meaning that there are, in essence, two CPUs on the same chip and can run two instructions at the same time. An eight-core processor would be able to run 8 instructions at the same time.
Most modern server class CPUs have at least 8 cores with some configurations supporting more than 30 cores per processor. Motherboards can contain multiple processors connected together by the UPI, or Intel® Ultra Path Interconnect.
CPUs and Trenton Systems
Without its "brain" operating at maximum efficiency, a computer's functionality is compromised, posing a risk to critical data and vital parts and components.
Equipped with high core counts and advanced cybersecurity technologies, CPUs help computers securely process and analyze data to enhance computer power across a wide range of environments.
At Trenton, we design our high-performance computers with next-gen Intel® CPUs to enhance throughput and ensure optimal performance in real-time.
For example, our TAC is equipped with dual Intel Xeon D 1700 CPUs. With 2.32x faster processing speed and 5.73x faster AI inferencing, these processors accelerate concurrent workloads and control throughput to improve performance at the tactical edge.
We are also a member of the Intel Partner Alliance and a member of the Intel Early Access Program, which allows our customers to have access to the latest Intel technologies before they go on the market.
Through the increased efficiency provided by CPUs, we provide customized hardware and software solutions that provide needed insights to make critical decisions ianywhere, anytime.
Share this
- High-performance computers (42)
- Military computers (38)
- Rugged computers (32)
- Cybersecurity (25)
- Industrial computers (25)
- Military servers (24)
- MIL-SPEC (20)
- Rugged servers (19)
- Press Release (17)
- Industrial servers (16)
- MIL-STD-810 (16)
- 5G Technology (14)
- Intel (13)
- Rack mount servers (12)
- processing (12)
- Computer hardware (11)
- Edge computing (11)
- Rugged workstations (11)
- Made in USA (10)
- Partnerships (9)
- Rugged computing (9)
- Sales, Marketing, and Business Development (9)
- Trenton Systems (9)
- networking (9)
- Peripheral Component Interconnect Express (PCIe) (7)
- Encryption (6)
- Federal Information Processing Standards (FIPS) (6)
- GPUs (6)
- IPU (6)
- Joint All-Domain Command and Control (JADC2) (6)
- Server motherboards (6)
- artificial intelligence (6)
- Computer stress tests (5)
- Cross domain solutions (5)
- Mission-critical servers (5)
- Rugged mini PCs (5)
- AI (4)
- BIOS (4)
- CPU (4)
- Defense (4)
- Military primes (4)
- Mission-critical systems (4)
- Platform Firmware Resilience (PFR) (4)
- Rugged blade servers (4)
- containerization (4)
- data protection (4)
- virtualization (4)
- Counterfeit electronic parts (3)
- DO-160 (3)
- Edge servers (3)
- Firmware (3)
- HPC (3)
- Just a Bunch of Disks (JBOD) (3)
- Leadership (3)
- Navy (3)
- O-RAN (3)
- RAID (3)
- RAM (3)
- Revision control (3)
- Ruggedization (3)
- SATCOM (3)
- Storage servers (3)
- Supply chain (3)
- Tactical Advanced Computer (TAC) (3)
- Wide-temp computers (3)
- computers made in the USA (3)
- data transfer (3)
- deep learning (3)
- embedded computers (3)
- embedded systems (3)
- firmware security (3)
- machine learning (3)
- Automatic test equipment (ATE) (2)
- C6ISR (2)
- COTS (2)
- COVID-19 (2)
- Compliance (2)
- Compute Express Link (CXL) (2)
- Computer networking (2)
- Controlled Unclassified Information (CUI) (2)
- DDR (2)
- DDR4 (2)
- DPU (2)
- Dual CPU motherboards (2)
- EW (2)
- I/O (2)
- Military standards (2)
- NVIDIA (2)
- NVMe SSDs (2)
- PCIe (2)
- PCIe 4.0 (2)
- PCIe 5.0 (2)
- RAN (2)
- SIGINT (2)
- SWaP-C (2)
- Software Guard Extensions (SGX) (2)
- Submarines (2)
- Supply chain security (2)
- TAA compliance (2)
- airborne (2)
- as9100d (2)
- chassis (2)
- data diode (2)
- end-to-end solution (2)
- hardware security (2)
- hardware virtualization (2)
- integrated combat system (2)
- manufacturing reps (2)
- memory (2)
- mission computers (2)
- private 5G (2)
- protection (2)
- secure by design (2)
- small form factor (2)
- software security (2)
- vRAN (2)
- zero trust (2)
- zero trust architecture (2)
- 3U BAM Server (1)
- 4G (1)
- 4U (1)
- 5G Frequencies (1)
- 5G Frequency Bands (1)
- AI/ML/DL (1)
- Access CDS (1)
- Aegis Combat System (1)
- Armed Forces (1)
- Asymmetric encryption (1)
- C-RAN (1)
- COMINT (1)
- CPUs (1)
- Cloud-based CDS (1)
- Coast Guard (1)
- Compliance testing (1)
- Computer life cycle (1)
- Containers (1)
- D-RAN (1)
- DART (1)
- DDR5 (1)
- DMEA (1)
- Data Center Modular Hardware System (DC-MHS) (1)
- Data Plane Development Kit (DPDK) (1)
- Defense Advanced Research Projects (DARP) (1)
- ELINT (1)
- EMI (1)
- EO/IR (1)
- Electromagnetic Interference (1)
- Electronic Warfare (EW) (1)
- FIPS 140-2 (1)
- FIPS 140-3 (1)
- Field Programmable Gate Array (FPGA) (1)
- Ground Control Stations (GCS) (1)
- Hardware-based CDS (1)
- Hybrid CDS (1)
- IES.5G (1)
- ION Mini PC (1)
- IP Ratings (1)
- IPMI (1)
- Industrial Internet of Things (IIoT) (1)
- Industry news (1)
- Integrated Base Defense (IBD) (1)
- LAN ports (1)
- LTE (1)
- Life cycle management (1)
- Lockheed Martin (1)
- MIL-S-901 (1)
- MIL-STD-167-1 (1)
- MIL-STD-461 (1)
- MIL-STD-464 (1)
- MOSA (1)
- Multi-Access Edge Computing (1)
- NASA (1)
- NIC (1)
- NIC Card (1)
- NVMe (1)
- O-RAN compliant (1)
- Oil and Gas (1)
- Open Compute Project (OCP) (1)
- OpenRAN (1)
- P4 (1)
- PCIe card (1)
- PCIe lane (1)
- PCIe slot (1)
- Precision timestamping (1)
- Product life cycle (1)
- ROM (1)
- Raytheon (1)
- Remotely piloted aircraft (RPA) (1)
- Rugged computing glossary (1)
- SEDs (1)
- SIM Card (1)
- Secure boot (1)
- Sensor Open Systems Architecture (SOSA) (1)
- Small form-factor pluggable (SFP) (1)
- Smart Edge (1)
- Smart NIC (1)
- SmartNIC (1)
- Software-based CDS (1)
- Symmetric encryption (1)
- System hardening (1)
- System hardening best practices (1)
- TME (1)
- Tech Partners (1)
- Total Memory Encryption (TME) (1)
- Transfer CDS (1)
- USB ports (1)
- VMEbus International Trade Association (VITA) (1)
- Vertical Lift Consortium (VLC) (1)
- Virtual machines (1)
- What are embedded systems? (1)
- Wired access backhaul (1)
- Wireless access backhaul (1)
- accredidation (1)
- aerospace (1)
- air gaps (1)
- airborne computers (1)
- asteroid (1)
- authentication (1)
- autonomous (1)
- certification (1)
- cognitive software-defined radios (CDRS) (1)
- command and control (C2) (1)
- communications (1)
- cores (1)
- custom (1)
- customer service (1)
- customer support (1)
- data linking (1)
- data recording (1)
- ethernet (1)
- full disk encryption (1)
- hardware monitoring (1)
- heat sink (1)
- hypervisor (1)
- in-house technical support (1)
- input (1)
- integrated edge solution (1)
- international business (1)
- licensed spectrum (1)
- liquid cooling (1)
- mCOTS (1)
- microelectronics (1)
- missile defense (1)
- mixed criticality (1)
- moving (1)
- multi-factor authentication (1)
- network slicing (1)
- neural networks (1)
- new headquarters (1)
- next generation interceptor (1)
- non-volatile memory (1)
- operating system (1)
- output (1)
- outsourced technical support (1)
- post-boot (1)
- pre-boot (1)
- private networks (1)
- public networks (1)
- radio access network (RAN) (1)
- reconnaissance (1)
- secure flash (1)
- security (1)
- self-encrypting drives (SEDs) (1)
- sff (1)
- software (1)
- software-defined radios (SDRs) (1)
- speeds and feeds (1)
- standalone (1)
- storage (1)
- systems (1)
- tactical wide area networks (1)
- technical support (1)
- technology (1)
- third-party motherboards (1)
- troposcatter communication (1)
- unlicensed spectrum (1)
- volatile memory (1)
- vpx (1)
- zero trust network (1)
- November 2024 (1)
- October 2024 (1)
- August 2024 (1)
- July 2024 (1)
- May 2024 (1)
- April 2024 (3)
- February 2024 (1)
- November 2023 (1)
- October 2023 (1)
- July 2023 (1)
- June 2023 (3)
- May 2023 (7)
- April 2023 (5)
- March 2023 (7)
- December 2022 (2)
- November 2022 (6)
- October 2022 (7)
- September 2022 (8)
- August 2022 (3)
- July 2022 (4)
- June 2022 (13)
- May 2022 (10)
- April 2022 (4)
- March 2022 (11)
- February 2022 (4)
- January 2022 (4)
- December 2021 (1)
- November 2021 (4)
- September 2021 (2)
- August 2021 (1)
- July 2021 (2)
- June 2021 (3)
- May 2021 (4)
- April 2021 (3)
- March 2021 (3)
- February 2021 (8)
- January 2021 (4)
- December 2020 (5)
- November 2020 (5)
- October 2020 (4)
- September 2020 (4)
- August 2020 (6)
- July 2020 (9)
- June 2020 (11)
- May 2020 (13)
- April 2020 (8)
- February 2020 (1)
- January 2020 (1)
- October 2019 (1)
- August 2019 (2)
- July 2019 (2)
- March 2019 (1)
- January 2019 (2)
- December 2018 (1)
- November 2018 (2)
- October 2018 (5)
- September 2018 (3)
- July 2018 (1)
- April 2018 (2)
- March 2018 (1)
- February 2018 (9)
- January 2018 (27)
- December 2017 (1)
- November 2017 (2)
- October 2017 (3)
Comments (2)