Share this
MIL-STD-810 Solar Radiation (Sunshine) Testing Overview [Method 505.7]
by Brett Daniel on Jun 4, 2020 3:47:37 PM
Graphic: Using two procedures, MIL-STD-810 solar radiation testing exposes test items to simulated sunlight and the effects of solar radiation.
Note: Trenton Systems is not a compliance testing facility. We manufacture rugged servers and workstations that conform to military and industrial standards, such as MIL-STD-810 and DO-160, and we can ensure that our systems comply with these standards using our in-house testing equipment, or by sending our systems to a third-party compliance testing laboratory for validation, but our facility does not offer compliance testing services for products manufactured outside of Trenton Systems. For a list of laboratories that can assist you with your testing needs, please read this blog post, which lists the best compliance testing laboratories in the world.
This is Part 8 in a series of the different test methods in MIL-STD-810H, the successor to MIL-STD-810G. View Part 7: Contamination by Fluids Testing and Part 6: Humidity Testing.
The sun may be shining, but it's damaging that MIL-STD-810 rugged computer.
Why?
Because although it may have been certified to sand and dust, humidity and shock testing standards, among others, it lacks protection from solar radiation exposure, which MIL-STD-810H covers under Method 505.7.
So, fire up those chamber lamps, lather yourself in sunscreen and prepare for a hefty dose of Vitamin D, because today, we're catching some rays - some educational rays - with a deeper look at MIL-STD-810 solar radiation (sunshine) testing.
What is MIL-STD-810 solar radiation (sunshine) testing?
According to MIL-STD-810H, the purpose of solar radiation testing, also known as Test Method 505.7, is to assess the heating effects that electromagnetic radiation has on a system or material. This method can also be used to assess the alterative effects of light, a phenomenon known as photodegradation.
Method 505.7 is also useful for assessing the effects of temperature changes caused by solar loading, or the additional heat generated from sunlight exposure, as well as the heating effects on material enclosed within an outer container, which must be provided for an accurate examination.
MIL-STD-810 solar radiation testing does not control for all naturally occurring environmental factors and recommends testing at appropriate natural sites. In addition, the method is not intended to be used for space applications.
What are the different solar radiation testing procedures?
Method 505.7 has two procedures: Procedure I (Cycling for Heating Effects) and Procedure II (Steady State for Actinic Effects).
Both procedures involve exposing test items to simulated sunlight and the effects of solar radiation. They differ, however, based on timing and level of solar loads.
Procedure I is used to assess the response temperatures of a system or material when it’s exposed to direct solar radiation in hot climates and establish the highest temperature that a test item will reach during repeated cycles.
Unlike Procedure II, which assesses actinic light effects after a system or material receives large amounts of sunlight over a prolonged period, Procedure I is not ideal for assessing photodegradation, although it can be used for limited actinic evaluation.
Procedure I is designed to determine the heat produced by solar radiation and effects of that heat by exposing materiel to continuous 24-hour cycles of simulated solar radiation at realistic maximum levels typical throughout the world.
Procedure II is designed to accelerate photodegradation effects produced by solar radiation. This procedure exposes materiel to cycles of intensified solar loads interspersed with dark periods to accelerate actinic effects that would be accumulated over a longer period of time under normal solar loads.
-Excerpt from MIL-STD-810H
How is solar radiation testing performed?
Solar radiation testing is performed in an environmental test chamber. Put simply, a system or material is placed beneath full-spectrum lamps that mimic the effects of direct sunlight.
Procedure I involves exposure to two high-temperature diurnal cycles known as Cycle A1 and Cycle A2.
Cycle A1 has peak conditions of 1120 watts per square meter and 49°C or 120°F.
Cycle A1 is normally accompanied by naturally occurring winds and represents the hottest conditions at locations experiencing very high temperatures and levels of solar radiation, such as the hot, dry deserts of north Africa, southwest and south central Asia, central and western Australia, northwestern Mexico and the southwestern United States.
Cycle A2 has peak conditions of 1120 watts per square meter and 43°C or 110°F and represents less severe environments, including the most southern parts of Europe, most of the Australian continent, south central Asia, northern and eastern Africa, coastal regions of north Africa, southern parts of the United States and most of Mexico.
Procedure II provides 2.5 times the solar energy experienced in one natural 24-hour diurnal cycle, as well as a four-hour darkness period to allow for alternating thermal stressing.
Remember that the goal of Procedure II is to assess the cumulative effects caused by prolonged exposure. As an acceleration procedure, it is designed to reduce the time it takes to reproduce these effects. If the repeated, long cycles of Procedure I were used for this test, assessment would likely take months.
What are the systematic effects of solar radiation?
Method 504.3 of MIL-STD-810 splits the effects of solar radiation into two categories based on its two procedures. The categories are heating effects and actinic effects.
Heating effects include:
- Jamming or loosening of moving parts
- Weakening of solder joints and glued parts
- Changes in strength and elasticity
- Loss of calibration or malfunction of linkage devices
- Loss of seal integrity
- Changes in electrical or electronic components
- Premature actuation of electrical contacts
- Changes in characteristics of elastomers and polymers
- Blistering, peeling, and de-lamination of paints, composites and surface laminates applied with adhesives such as radar-absorbent material (RAM)
- Softening of potting compounds
- Pressure variations
- Sweating of composite materials and explosives
- Difficulty in handling
Actinic or photodegradation effects include:
- Fading of fabric and plastic color
- Checking, chalking and fading of paints
- Deterioration of natural and synthetic elastomers and polymers through photochemical reactions initiated by shorter wavelength radiation
Should you ask about solar radiation testing?
Any system or material that’s likely to be exposed to direct sunlight for a prolonged period and in turn subjected to its physical and chemical effects should undergo solar radiation testing to prevent damage or impairment.
Trenton Systems performs shock, vibration, temperature and humidity testing on its rugged servers, blade servers and workstations in-house, but we partner with local compliance testing facilities that can accommodate testing requests beyond our capabilities.
Share this
- High-performance computers (42)
- Military computers (38)
- Rugged computers (32)
- Cybersecurity (25)
- Industrial computers (25)
- Military servers (24)
- MIL-SPEC (20)
- Rugged servers (19)
- Press Release (17)
- Industrial servers (16)
- MIL-STD-810 (16)
- 5G Technology (14)
- Intel (13)
- Rack mount servers (12)
- processing (12)
- Computer hardware (11)
- Edge computing (11)
- Rugged workstations (11)
- Made in USA (10)
- Partnerships (9)
- Rugged computing (9)
- Sales, Marketing, and Business Development (9)
- Trenton Systems (9)
- networking (9)
- Peripheral Component Interconnect Express (PCIe) (7)
- Encryption (6)
- Federal Information Processing Standards (FIPS) (6)
- GPUs (6)
- IPU (6)
- Joint All-Domain Command and Control (JADC2) (6)
- Server motherboards (6)
- artificial intelligence (6)
- Computer stress tests (5)
- Cross domain solutions (5)
- Mission-critical servers (5)
- Rugged mini PCs (5)
- AI (4)
- BIOS (4)
- CPU (4)
- Defense (4)
- Military primes (4)
- Mission-critical systems (4)
- Platform Firmware Resilience (PFR) (4)
- Rugged blade servers (4)
- containerization (4)
- data protection (4)
- virtualization (4)
- Counterfeit electronic parts (3)
- DO-160 (3)
- Edge servers (3)
- Firmware (3)
- HPC (3)
- Just a Bunch of Disks (JBOD) (3)
- Leadership (3)
- Navy (3)
- O-RAN (3)
- RAID (3)
- RAM (3)
- Revision control (3)
- Ruggedization (3)
- SATCOM (3)
- Storage servers (3)
- Supply chain (3)
- Tactical Advanced Computer (TAC) (3)
- Wide-temp computers (3)
- computers made in the USA (3)
- data transfer (3)
- deep learning (3)
- embedded computers (3)
- embedded systems (3)
- firmware security (3)
- machine learning (3)
- Automatic test equipment (ATE) (2)
- C6ISR (2)
- COTS (2)
- COVID-19 (2)
- Compliance (2)
- Compute Express Link (CXL) (2)
- Computer networking (2)
- Controlled Unclassified Information (CUI) (2)
- DDR (2)
- DDR4 (2)
- DPU (2)
- Dual CPU motherboards (2)
- EW (2)
- I/O (2)
- Military standards (2)
- NVIDIA (2)
- NVMe SSDs (2)
- PCIe (2)
- PCIe 4.0 (2)
- PCIe 5.0 (2)
- RAN (2)
- SIGINT (2)
- SWaP-C (2)
- Software Guard Extensions (SGX) (2)
- Submarines (2)
- Supply chain security (2)
- TAA compliance (2)
- airborne (2)
- as9100d (2)
- chassis (2)
- data diode (2)
- end-to-end solution (2)
- hardware security (2)
- hardware virtualization (2)
- integrated combat system (2)
- manufacturing reps (2)
- memory (2)
- mission computers (2)
- private 5G (2)
- protection (2)
- secure by design (2)
- small form factor (2)
- software security (2)
- vRAN (2)
- zero trust (2)
- zero trust architecture (2)
- 3U BAM Server (1)
- 4G (1)
- 4U (1)
- 5G Frequencies (1)
- 5G Frequency Bands (1)
- AI/ML/DL (1)
- Access CDS (1)
- Aegis Combat System (1)
- Armed Forces (1)
- Asymmetric encryption (1)
- C-RAN (1)
- COMINT (1)
- CPUs (1)
- Cloud-based CDS (1)
- Coast Guard (1)
- Compliance testing (1)
- Computer life cycle (1)
- Containers (1)
- D-RAN (1)
- DART (1)
- DDR5 (1)
- DMEA (1)
- Data Center Modular Hardware System (DC-MHS) (1)
- Data Plane Development Kit (DPDK) (1)
- Defense Advanced Research Projects (DARP) (1)
- ELINT (1)
- EMI (1)
- EO/IR (1)
- Electromagnetic Interference (1)
- Electronic Warfare (EW) (1)
- FIPS 140-2 (1)
- FIPS 140-3 (1)
- Field Programmable Gate Array (FPGA) (1)
- Ground Control Stations (GCS) (1)
- Hardware-based CDS (1)
- Hybrid CDS (1)
- IES.5G (1)
- ION Mini PC (1)
- IP Ratings (1)
- IPMI (1)
- Industrial Internet of Things (IIoT) (1)
- Industry news (1)
- Integrated Base Defense (IBD) (1)
- LAN ports (1)
- LTE (1)
- Life cycle management (1)
- Lockheed Martin (1)
- MIL-S-901 (1)
- MIL-STD-167-1 (1)
- MIL-STD-461 (1)
- MIL-STD-464 (1)
- MOSA (1)
- Multi-Access Edge Computing (1)
- NASA (1)
- NIC (1)
- NIC Card (1)
- NVMe (1)
- O-RAN compliant (1)
- Oil and Gas (1)
- Open Compute Project (OCP) (1)
- OpenRAN (1)
- P4 (1)
- PCIe card (1)
- PCIe lane (1)
- PCIe slot (1)
- Precision timestamping (1)
- Product life cycle (1)
- ROM (1)
- Raytheon (1)
- Remotely piloted aircraft (RPA) (1)
- Rugged computing glossary (1)
- SEDs (1)
- SIM Card (1)
- Secure boot (1)
- Sensor Open Systems Architecture (SOSA) (1)
- Small form-factor pluggable (SFP) (1)
- Smart Edge (1)
- Smart NIC (1)
- SmartNIC (1)
- Software-based CDS (1)
- Symmetric encryption (1)
- System hardening (1)
- System hardening best practices (1)
- TME (1)
- Tech Partners (1)
- Total Memory Encryption (TME) (1)
- Transfer CDS (1)
- USB ports (1)
- VMEbus International Trade Association (VITA) (1)
- Vertical Lift Consortium (VLC) (1)
- Virtual machines (1)
- What are embedded systems? (1)
- Wired access backhaul (1)
- Wireless access backhaul (1)
- accredidation (1)
- aerospace (1)
- air gaps (1)
- airborne computers (1)
- asteroid (1)
- authentication (1)
- autonomous (1)
- certification (1)
- cognitive software-defined radios (CDRS) (1)
- command and control (C2) (1)
- communications (1)
- cores (1)
- custom (1)
- customer service (1)
- customer support (1)
- data linking (1)
- data recording (1)
- ethernet (1)
- full disk encryption (1)
- hardware monitoring (1)
- heat sink (1)
- hypervisor (1)
- in-house technical support (1)
- input (1)
- integrated edge solution (1)
- international business (1)
- licensed spectrum (1)
- liquid cooling (1)
- mCOTS (1)
- microelectronics (1)
- missile defense (1)
- mixed criticality (1)
- moving (1)
- multi-factor authentication (1)
- network slicing (1)
- neural networks (1)
- new headquarters (1)
- next generation interceptor (1)
- non-volatile memory (1)
- operating system (1)
- output (1)
- outsourced technical support (1)
- post-boot (1)
- pre-boot (1)
- private networks (1)
- public networks (1)
- radio access network (RAN) (1)
- reconnaissance (1)
- secure flash (1)
- security (1)
- self-encrypting drives (SEDs) (1)
- sff (1)
- software (1)
- software-defined radios (SDRs) (1)
- speeds and feeds (1)
- standalone (1)
- storage (1)
- systems (1)
- tactical wide area networks (1)
- technical support (1)
- technology (1)
- third-party motherboards (1)
- troposcatter communication (1)
- unlicensed spectrum (1)
- volatile memory (1)
- vpx (1)
- zero trust network (1)
- November 2024 (1)
- October 2024 (1)
- August 2024 (1)
- July 2024 (1)
- May 2024 (1)
- April 2024 (3)
- February 2024 (1)
- November 2023 (1)
- October 2023 (1)
- July 2023 (1)
- June 2023 (3)
- May 2023 (7)
- April 2023 (5)
- March 2023 (7)
- December 2022 (2)
- November 2022 (6)
- October 2022 (7)
- September 2022 (8)
- August 2022 (3)
- July 2022 (4)
- June 2022 (13)
- May 2022 (10)
- April 2022 (4)
- March 2022 (11)
- February 2022 (4)
- January 2022 (4)
- December 2021 (1)
- November 2021 (4)
- September 2021 (2)
- August 2021 (1)
- July 2021 (2)
- June 2021 (3)
- May 2021 (4)
- April 2021 (3)
- March 2021 (3)
- February 2021 (8)
- January 2021 (4)
- December 2020 (5)
- November 2020 (5)
- October 2020 (4)
- September 2020 (4)
- August 2020 (6)
- July 2020 (9)
- June 2020 (11)
- May 2020 (13)
- April 2020 (8)
- February 2020 (1)
- January 2020 (1)
- October 2019 (1)
- August 2019 (2)
- July 2019 (2)
- March 2019 (1)
- January 2019 (2)
- December 2018 (1)
- November 2018 (2)
- October 2018 (5)
- September 2018 (3)
- July 2018 (1)
- April 2018 (2)
- March 2018 (1)
- February 2018 (9)
- January 2018 (27)
- December 2017 (1)
- November 2017 (2)
- October 2017 (3)
Comments (2)