Share this
What Is FIPS 140-2?
by Brett Daniel on Apr 22, 2021 4:20:12 PM
Graphic: The official name for FIPS 140-2 is "Security Requirements for Cryptographic Modules."
Table of Contents
- What is FIPS 140-2?
- What does it mean to be compliant with FIPS 140-2?
- How do FIPS 140-2 levels work?
- How do you become compliant with FIPS 140-2?
- What algorithms are compliant with FIPS 140-2?
- What's the difference between FIPS 140-2 and FIPS 197?
- Is FIPS 140-2 approved by the NSA?
- Trenton Systems and FIPS 140-2
In the high-performance computing industry, all roads lead back to security, especially these days. Whether we're discussing system hardening, AES encryption, self-encrypting drives, the Cybersecurity Maturity Model Certification (CMMC), TAA compliance, or the importance of securing hardware, firmware, and software holistically, it's a fact: security is central.
FIPS 140-2 yet another security-related piece of the puzzle. It ensures that sensitive government information stored on cryptographic modules is well-protected from independent and state-sponsored hackers. Keeping the government's sensitive information out of these individuals' hands is one of the main reasons why the National Institute of Standards and Technology (NIST) developed the publication in the first place.
But what is FIPS 140-2, how does it protect the government's sensitive information, and how does one achieve FIPS 140-2 validation or compliance?
We'll answer these questions in more in this blog post, and stay tuned for our next blog post on FIPS 140-3 and how it compares to FIPS 140-2.
A brief note for vendors: Although no validations against the standard have been issued as of yet, FIPS 140-3 has superseded FIPS 140-2, but FIPS 140-2 is still valid and accepted as of April 2021, and validation testing against FIPS 140-2 remains available until Sept. 21, 2021. FIPS 140-2 validations will still be granted after that date. FIPS 140-3 testing is also currently available, but after Sept. 21, the NIST will retire FIPS 140-2 testing entirely and begin testing against FIPS 140-3 only.
Graphic: FIPS 140-2 is a publication about securing sensitive information on cryptographic modules.
What is FIPS 140-2?
FIPS 140-2 is a NIST publication that lists security requirements for cryptographic modules protecting sensitive but unclassified information in computer and telecommunications systems. FIPS stands for "Federal Information Processing Standard," and 140-2 is the publication number for this particular FIPS. The NIST issued FIPS 140-2 on May 25, 2001, as a successor to FIPS 140-1, which also addresses security requirements for cryptographic modules.
FIPS 140-2 compliance applies to all federal agencies using cryptographic security measures to protect sensitive but unclassified information. It applies to not only cryptographic hardware components and modules but software and firmware programs and modules as well. FIPS 140-2 defines a cryptographic module as “the set of hardware, software, and/or firmware that implements approved security functions and is contained within the cryptographic boundary.”
If a cryptographic module is compliant with FIPS 140-2, that just means it’s FIPS-approved, recommended by the National Institute of Standards and Technology (NIST), that it satisfies certain cryptographic security features outlined in the standard. In the specific case of FIPS 140-2 hard disk drives (HDDs) and solid-state drives (SSDs), a FIPS-140-2-compliant drive is often referred to simply as a “FIPS drive” or “FIPS-approved drive.”
FIPS 140-2 cryptographic modules protecting sensitive but unclassified information are most often found in government and military applications and environments, from the high-powered desktop workstation in the safety and comfort of an air-conditioned government office, to the edge server deployed at the severe and unforgiving frontlines of a battlefield.
FIPS 140-2 validation is mandated by the Federal Information Security Modernization Act (FISMA). As a result, vendors whose cryptographic modules do not satisfy FIPS 140-2 validation requirements cannot sell their solutions to the government.
(For reference, the latest FIPS standard, FIPS 140-3, was released in 2019. Learn more about FIPS 140-3 here.)
Graphic: The FIPS 140-2 validation process is handled via Cryptographic Module Validation Program (CVMP).
What does it mean to be compliant with FIPS 140-2?
If a cryptographic module is compliant with FIPS 140-2, that means it complies with one of the four security levels described in FIPS 140-2: Level 1, Level 2, Level 3, or Level 4.
In addition, if a specific module is being used by the federal government, then it has undergone a testing and validation process via the Cryptographic Module Validation Program (CMVP), a joint effort between the NIST and Communications Security Establishment (CSE) of the Government of Canada.
The goal of the CMVP is to validate manufacturers’ cryptographic modules to FIPS 140-2 and ensure that federal agencies are procuring equipment containing these validated modules. The CMVP is basically a security barrier to entry for cryptographic module vendors looking to sell their products to federal agencies that must comply with FIPS 140-2 requirements.
If the agency specifies that the information or data be cryptographically protected, then FIPS 140-2 or FIPS 140-3 is applicable. In essence, if cryptography is required, then it must be validated.
- Excerpt from the Cryptographic Module Validation Program (CVMP) project overview
Vendors’ modules are independently tested at accredited laboratories, called Cryptographic and Security Testing (CST) laboratories, to ensure compliance with FIPS 140-2.
The FIPS 140-2 validation process can take up to a year to complete, can cost as much as $100,000, and there are no guarantees that the product will cut the mustard.
One of the main goals of FIPS 140-2 compliance, according to the standard, is to prevent hackers, organized crime groups, and economic competitors from mounting attacks on the federal government’s sensitive information.
Graphic: FIPS 140-2 has four security levels, with the higher levels offering more protective features.
How do FIPS 140-2 levels work?
FIPS 140-2 levels are increasing, meaning higher security levels compound and provide more robust protection features than lower security levels. FIPS 140-2 levels are also designed to be cost-effective, with lower-level protections generally being more affordable to implement.
FIPS 140-2 Security Level 1
FIPS 140-2 Security Level 1 provides the lowest degree of security and lists basic security requirements, such as the use of a FIPS-approved algorithm. Extensive physical security protections, such as tamper-resistant enclosures and pick-resistant locks, as well as role-based or identity-based authentication, are not required at this level. Modules at this level can even be used in an unevaluated operating system environment.
FIPS 140-2 Security Level 2
FIPS 140-2 Security Level 2 strengthens the physical security of a module by using tamper-evident technology, or technology that makes unauthorized physical access to a module more difficult but also easy to detect. To meet the requirements of Security Level 2, a module must have some combination of tamper-evident coatings, seals, and pick-resistant locks. In addition, role-based authentication must be established, meaning the module must verify that an operator is authorized to assume a specific role to control specific functions of and perform specific tasks on the module. An evaluated operating system must also be used with Security Level 2 modules.
FIPS 140-2 Security Level 3
FIPS 140-2 Security Level 3 further strengthens the physical security of a module by using strong module enclosures and zeroization circuitry that erases all plaintext and critical security parameters once the module’s removable covers or doors are opened. Identity-based authentication and execution on an evaluated operating system are also required at Security Level 3, as is the physical separation of ports or logical separation of interfaces, which protects plaintext CSPs and software and firmware components from unauthorized executables.
FIPS 140-2 Security Level 4
FIPS 140-2 Security Level 4 provides the highest degree of protection. According to FIPS 140-2, the physical security mechanisms at Security Level 4 provide a complete envelope of protection intended to detect and respond to all unauthorized physical attacks. Detection of and response to these attacks have a high probability of success at this level, with immediate zeroization of all module contents taking place in the event of unauthorized access. As with Security Level 2 and Security Level 3, the use of a trusted operating system environment is also required at Security Level 4. Environmental failure protection (EFP) features or environmental failure testing (EFT) is also required at this level, since attackers may take a module and expose it to environmental conditions outside its normal operating ranges to disable its protections. Security Level 4 modules are safe for operation in harsh environments.
Graphic: The FIPS 140-2 compliance process ensures that a cryptographic module is using FIPS-approved algorithms, key management, and authentication.
How do you become compliant with FIPS 140-2?
To become compliant with FIPS 140-2, a cryptographic module must employ FIPS-140-2-compliant algorithms, cryptographic key management techniques, and authentication techniques. These three key areas encompass a wide range of design and implementation security requirements, including, but not limited to, those associated with:
- Cryptographic module ports and interfaces
- Roles, services, and authentication
- Physical security and environmental failure protection and testing
- Cryptographic key management
- Electromagnetic interference (EMI) and electromagnetic compatibility (EMC)
- Configuration management
For example, under Cryptographic Module Ports and Interfaces, the standard states that a cryptographic module must have four logical interfaces: the data input interface, the data output interface, the control input interface, and the status output interface. These account for incoming data, outgoing data, module operation controls, and output signals and status indicators, respectively.
Under Roles, Services, and Authentication, FIPS 140-2 states that a cryptographic module must support a user role and a crypto officer role, a service output that shows the status of a module, and either role-based authentication or identity-based authentication mechanisms, depending on the security level.
Under Physical Security, FIPS 140-2 lists requirements for single-chip modules, multiple-chip embedded modules, and multiple-chip standalone modules. Each requires a different type of physical protection depending on the security level, and the levels are increasing, meaning the higher levels offer a boost in security over the lower levels.
For example, a single-chip cryptographic module conforming to Security Level 2 requires an opaque tamper-evident coating on the chip or enclosure. That same module embodiment requires a hard opaque tamper-evident coating on the chip or a strong removal-resistant or penetration-resistant enclosure to conform to Security Level 3.
A multiple-chip embedded module conforming to Security Level 4 requires a tamper detection or response envelope with tamper response and zeroization circuitry, which is circuitry that facilitates the automatic erasure of sensitive information, such as plaintext data and cryptographic keys, if the module is tampered with or stolen.
Cryptographic modules conforming to Security Level 4 must also employ both environmental failure protection (EFP) features or undergo environmental failure testing (EFT). These requirements are unique to this level and mainly focus on protecting the modules from extreme fluctuations in voltage and temperature.
For a full list of FIPS 140-2 security requirements, consult Section 4 of the standard, which you can download near the introduction of this blog post.
Graphic: Annex A of FIPS 140-2 lists all FIPS-140-2-compliant algorithms.
What algorithms are compliant with FIPS 140-2?
The following algorithms are compliant with FIPS 140-2:
Symmetric Key Encryption & Decryption
- Advanced Encryption Standard (AES)
- Triple-DES Encryption Algorithm (TDEA)
Digital Signatures
- Digital Signature Standard (DSS), which includes the Digital Signature Algorithm (DSA), Rivest-Shamir-Adleman (RSA), and the Elliptic Curve Digital Signature Algorithm (ECDSA)
Secure Hash
- Secure Hash Standard (SHS), which includes Secure Hash Algorithm (SHA) 1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256
- SHA-3 Standard, which includes SHA-3 hash algorithms, SHA-3 extendable output functions (XOF), and SHA-3 derived functions
Message Authentication
- Triple-DES Encryption Algorithm (TDEA)
- Advanced Encryption Standard (AES)
- Hash-Based Message Authentication Code (HMAC)
Review Annex A of FIPS 140-2 for more information about these algorithms.
Graphic: FIPS 140-2 and FIPS 197 go hand in hand. The former specifies a wide range of cryptographic module security requirements, and the latter is the FIPS designation for the Advanced Encryption Standard (AES).
What's the difference between FIPS 140-2 and FIPS 197?
FIPS 140-2 is the overarching NIST security standard for cryptographic modules transmitting sensitive but unclassified information. FIPS 197, on the other hand, is the NIST’s publication name for the Advanced Encryption Standard (AES), which specifies a FIPS-approved cryptographic algorithm that’s used to encrypt and decrypt a module’s sensitive information.
AES encryption is compliant with FIPS 140-2. It’s a symmetric encryption algorithm that uses cryptographic key lengths of 128, 192, and 256 bits to encrypt and decrypt a module’s sensitive information. AES algorithms are notoriously difficult to crack, with longer key lengths offering additional protection.
So, to summarize, FIPS 140-2 is focused on securing a cryptographic module holistically, while FIPS 197 focuses on the AES algorithms that can be utilized by the module to protect sensitive information. These algorithms are not the only algorithms that can be used, but they’re some of the most widely used.
For more information on AES encryption and AES algorithms, check out AES Encryption: The Definitive Question-And-Answer Guide.
Graphic: The National Security Agency (NSA) has its own designations and approval processes for cryptographic products.
Is FIPS 140-2 NSA-approved?
The NSA has its own classifications for cryptographic products. For example, a cryptographic device that can protect sensitive but unclassified information is known as a Type 3 product, which may or may not use the NSA-approved Advanced Encryption Standard (AES).
The NSA also specifies a Type 1 and Type 2 product, which are used to protect classified and unclassified government information, respectively.
The NIST’s FIPS publications, including FIPS 140-2, are approved by the U.S. Secretary of Commerce, so whether FIPS 140-2 is approved by the NSA is immaterial because there’s no official NSA approval process for FIPS publications. The NSA does use FIPS-approved algorithms and FIPS-140-2-validated cryptographic modules, however.
Photo: Defense and aerospace customers frequently ask Trenton Systems to incorporate FIPS drives into their Trenton rugged servers and workstations. We have no problem satisfying this requirement for our customers.
Conclusion: Trenton Systems and FIPS 140-2
Trenton Systems can incorporate the latest and greatest hard disk drives (HDDs) and solid-state drives (SSDs) as well as other cybersecurity technologies into its rugged servers and workstations upon request. We acquire the drives from a network of trusted manufacturers that specialize in FIPS 140-2 compliance and self-encrypting drives (SEDs).
SEDs (self-encrypting drives) are drives that encrypt data as it is being written onto the disk. Each disk has a data encryption key (DEK) to encrypt data as it being written onto the disk and decrypt it as it is being read onto the disk. SEDs can be certified to FIPS (Federal Information Processing Standards). Read more about another encryption technology, full disk encryption, here.
Many of our customers are using FIPS-140-2-compliant storage drives in the field right now, and they can rest easy knowing that their sensitive information is well-protected from those who wish it weren't.
Our latest rugged computing solution, the 3U BAM Server, designed with aerospace and defense customers at top of mind, can also utilize FIPS drives, among other advanced security measures, to protect customers' sensitive information.
We'd be happy to speak with you about satisfying your FIPS 140-2 requirements and others. In fact, we have an entire compliance team on standby to address your unique needs.
Share this
- High-performance computers (42)
- Military computers (38)
- Rugged computers (32)
- Cybersecurity (25)
- Industrial computers (25)
- Military servers (24)
- MIL-SPEC (20)
- Rugged servers (19)
- Press Release (17)
- Industrial servers (16)
- MIL-STD-810 (16)
- 5G Technology (14)
- Intel (13)
- Rack mount servers (12)
- processing (12)
- Computer hardware (11)
- Edge computing (11)
- Rugged workstations (11)
- Made in USA (10)
- Partnerships (9)
- Rugged computing (9)
- Sales, Marketing, and Business Development (9)
- Trenton Systems (9)
- networking (9)
- Peripheral Component Interconnect Express (PCIe) (7)
- Encryption (6)
- Federal Information Processing Standards (FIPS) (6)
- GPUs (6)
- IPU (6)
- Joint All-Domain Command and Control (JADC2) (6)
- Server motherboards (6)
- artificial intelligence (6)
- Computer stress tests (5)
- Cross domain solutions (5)
- Mission-critical servers (5)
- Rugged mini PCs (5)
- AI (4)
- BIOS (4)
- CPU (4)
- Defense (4)
- Military primes (4)
- Mission-critical systems (4)
- Platform Firmware Resilience (PFR) (4)
- Rugged blade servers (4)
- containerization (4)
- data protection (4)
- virtualization (4)
- Counterfeit electronic parts (3)
- DO-160 (3)
- Edge servers (3)
- Firmware (3)
- HPC (3)
- Just a Bunch of Disks (JBOD) (3)
- Leadership (3)
- Navy (3)
- O-RAN (3)
- RAID (3)
- RAM (3)
- Revision control (3)
- Ruggedization (3)
- SATCOM (3)
- Storage servers (3)
- Supply chain (3)
- Tactical Advanced Computer (TAC) (3)
- Wide-temp computers (3)
- computers made in the USA (3)
- data transfer (3)
- deep learning (3)
- embedded computers (3)
- embedded systems (3)
- firmware security (3)
- machine learning (3)
- Automatic test equipment (ATE) (2)
- C6ISR (2)
- COTS (2)
- COVID-19 (2)
- Compliance (2)
- Compute Express Link (CXL) (2)
- Computer networking (2)
- Controlled Unclassified Information (CUI) (2)
- DDR (2)
- DDR4 (2)
- DPU (2)
- Dual CPU motherboards (2)
- EW (2)
- I/O (2)
- Military standards (2)
- NVIDIA (2)
- NVMe SSDs (2)
- PCIe (2)
- PCIe 4.0 (2)
- PCIe 5.0 (2)
- RAN (2)
- SIGINT (2)
- SWaP-C (2)
- Software Guard Extensions (SGX) (2)
- Submarines (2)
- Supply chain security (2)
- TAA compliance (2)
- airborne (2)
- as9100d (2)
- chassis (2)
- data diode (2)
- end-to-end solution (2)
- hardware security (2)
- hardware virtualization (2)
- integrated combat system (2)
- manufacturing reps (2)
- memory (2)
- mission computers (2)
- private 5G (2)
- protection (2)
- secure by design (2)
- small form factor (2)
- software security (2)
- vRAN (2)
- zero trust (2)
- zero trust architecture (2)
- 3U BAM Server (1)
- 4G (1)
- 4U (1)
- 5G Frequencies (1)
- 5G Frequency Bands (1)
- AI/ML/DL (1)
- Access CDS (1)
- Aegis Combat System (1)
- Armed Forces (1)
- Asymmetric encryption (1)
- C-RAN (1)
- COMINT (1)
- CPUs (1)
- Cloud-based CDS (1)
- Coast Guard (1)
- Compliance testing (1)
- Computer life cycle (1)
- Containers (1)
- D-RAN (1)
- DART (1)
- DDR5 (1)
- DMEA (1)
- Data Center Modular Hardware System (DC-MHS) (1)
- Data Plane Development Kit (DPDK) (1)
- Defense Advanced Research Projects (DARP) (1)
- ELINT (1)
- EMI (1)
- EO/IR (1)
- Electromagnetic Interference (1)
- Electronic Warfare (EW) (1)
- FIPS 140-2 (1)
- FIPS 140-3 (1)
- Field Programmable Gate Array (FPGA) (1)
- Ground Control Stations (GCS) (1)
- Hardware-based CDS (1)
- Hybrid CDS (1)
- IES.5G (1)
- ION Mini PC (1)
- IP Ratings (1)
- IPMI (1)
- Industrial Internet of Things (IIoT) (1)
- Industry news (1)
- Integrated Base Defense (IBD) (1)
- LAN ports (1)
- LTE (1)
- Life cycle management (1)
- Lockheed Martin (1)
- MIL-S-901 (1)
- MIL-STD-167-1 (1)
- MIL-STD-461 (1)
- MIL-STD-464 (1)
- MOSA (1)
- Multi-Access Edge Computing (1)
- NASA (1)
- NIC (1)
- NIC Card (1)
- NVMe (1)
- O-RAN compliant (1)
- Oil and Gas (1)
- Open Compute Project (OCP) (1)
- OpenRAN (1)
- P4 (1)
- PCIe card (1)
- PCIe lane (1)
- PCIe slot (1)
- Precision timestamping (1)
- Product life cycle (1)
- ROM (1)
- Raytheon (1)
- Remotely piloted aircraft (RPA) (1)
- Rugged computing glossary (1)
- SEDs (1)
- SIM Card (1)
- Secure boot (1)
- Sensor Open Systems Architecture (SOSA) (1)
- Small form-factor pluggable (SFP) (1)
- Smart Edge (1)
- Smart NIC (1)
- SmartNIC (1)
- Software-based CDS (1)
- Symmetric encryption (1)
- System hardening (1)
- System hardening best practices (1)
- TME (1)
- Tech Partners (1)
- Total Memory Encryption (TME) (1)
- Transfer CDS (1)
- USB ports (1)
- VMEbus International Trade Association (VITA) (1)
- Vertical Lift Consortium (VLC) (1)
- Virtual machines (1)
- What are embedded systems? (1)
- Wired access backhaul (1)
- Wireless access backhaul (1)
- accredidation (1)
- aerospace (1)
- air gaps (1)
- airborne computers (1)
- asteroid (1)
- authentication (1)
- autonomous (1)
- certification (1)
- cognitive software-defined radios (CDRS) (1)
- command and control (C2) (1)
- communications (1)
- cores (1)
- custom (1)
- customer service (1)
- customer support (1)
- data linking (1)
- data recording (1)
- ethernet (1)
- full disk encryption (1)
- hardware monitoring (1)
- heat sink (1)
- hypervisor (1)
- in-house technical support (1)
- input (1)
- integrated edge solution (1)
- international business (1)
- licensed spectrum (1)
- liquid cooling (1)
- mCOTS (1)
- microelectronics (1)
- missile defense (1)
- mixed criticality (1)
- moving (1)
- multi-factor authentication (1)
- network slicing (1)
- neural networks (1)
- new headquarters (1)
- next generation interceptor (1)
- non-volatile memory (1)
- operating system (1)
- output (1)
- outsourced technical support (1)
- post-boot (1)
- pre-boot (1)
- private networks (1)
- public networks (1)
- radio access network (RAN) (1)
- reconnaissance (1)
- secure flash (1)
- security (1)
- self-encrypting drives (SEDs) (1)
- sff (1)
- software (1)
- software-defined radios (SDRs) (1)
- speeds and feeds (1)
- standalone (1)
- storage (1)
- systems (1)
- tactical wide area networks (1)
- technical support (1)
- technology (1)
- third-party motherboards (1)
- troposcatter communication (1)
- unlicensed spectrum (1)
- volatile memory (1)
- vpx (1)
- zero trust network (1)
- November 2024 (1)
- October 2024 (1)
- August 2024 (1)
- July 2024 (1)
- May 2024 (1)
- April 2024 (3)
- February 2024 (1)
- November 2023 (1)
- October 2023 (1)
- July 2023 (1)
- June 2023 (3)
- May 2023 (7)
- April 2023 (5)
- March 2023 (7)
- December 2022 (2)
- November 2022 (6)
- October 2022 (7)
- September 2022 (8)
- August 2022 (3)
- July 2022 (4)
- June 2022 (13)
- May 2022 (10)
- April 2022 (4)
- March 2022 (11)
- February 2022 (4)
- January 2022 (4)
- December 2021 (1)
- November 2021 (4)
- September 2021 (2)
- August 2021 (1)
- July 2021 (2)
- June 2021 (3)
- May 2021 (4)
- April 2021 (3)
- March 2021 (3)
- February 2021 (8)
- January 2021 (4)
- December 2020 (5)
- November 2020 (5)
- October 2020 (4)
- September 2020 (4)
- August 2020 (6)
- July 2020 (9)
- June 2020 (11)
- May 2020 (13)
- April 2020 (8)
- February 2020 (1)
- January 2020 (1)
- October 2019 (1)
- August 2019 (2)
- July 2019 (2)
- March 2019 (1)
- January 2019 (2)
- December 2018 (1)
- November 2018 (2)
- October 2018 (5)
- September 2018 (3)
- July 2018 (1)
- April 2018 (2)
- March 2018 (1)
- February 2018 (9)
- January 2018 (27)
- December 2017 (1)
- November 2017 (2)
- October 2017 (3)
No Comments Yet
Let us know what you think