Share this
What is IPMI? A Guide to Intelligent Platform Management Interface
by Christopher Trick on Mar 21, 2022 11:03:45 AM
A BMC (Baseboard Management Controller), which is an embedded computer that can access and control all of a server's resources, uses remote management capabilities to increase efficiency but can be hacked at any time, posing security risks.
In this blog, you'll learn what IPMI (Intelligent Platform Management Interface) is and why its security is important to safely monitor server health and control data irrespective of the operating system or location.
What is IPMI?
IPMI (Intelligent Platform Management Interface) is a set of standardized specifications for hardware-based platform management systems that makes it possible to control and monitor servers centrally.
IPMI is a form of out-of-band (OOB) management, meaning it can perform management tasks regardless of the server's location or installed operating system.
IPMI is used by the server's BMC (Baseboard Management Controller), an embedded computer used to provide OOB management. The BMC has access to and control of the server's resources, including memory, power, and storage. Additionally, it supports remote boot and server environment monitoring.
IPMI is usually implemented as a network service that runs on a dedicated Ethernet port on the server, sometimes labeled the "management port."
What are the main features of IPMI?
IPMI is a software-neutral approach that functions independently from a server's BIOS, CPU, and operating system (OS).
The main reason why IPMI is critical is its ability to effectively execute the following four features:
- Monitoring and supervising servers
- Recovering and restarting servers
- Logging server states
- Listing all server inventory
What are the benefits of IPMI?
There are six main benefits to IPMI:
- It constantly monitors server health and issues advanced warnings of possible system failures.
- IPMI acts independently of the server and is always accessible.
- Configuration changes are easy to make.
- It enables the user(s) to access and make BIOS changes without operating system access.
- Server recovery is possible even if it is switched off.
- It is a universal standard that is supported by the vast majority of hardware vendors.
What supports IPMI?
In addition to the BMC, there are four other key components that support IPMI:
- Intelligent Chassis Management Bus (ICMB): This is an interface that allows communication from one chassis to another.
- Intelligent Platform Management Bus (IPMB): This extends the BMC management controllers while complying with a communications protocol.
- IPMI Memory: This is the IPMI's Sensor Data Record, System Event Log, Field Replaceable Units, and Repository that stores data.
- Communication Interfaces: These consist of local system interfaces, a serial interface, LAN (local access network) interface, ICMB, and PCI Management Bus.
How to access IPMI
Once you connect to the IPMI manager via the LAN or the internet, the manager utilizes IPMI over IP (Internet Protocol) to connect with the BMC on the server motherboard.
The BMC then uses the system bus to connect with the BIOS, CPU, OS, power supply, and sensors, allowing the administration of the CPU speeds, fan speeds, voltages, temperatures, event log, and rebooting of the server.
Why IPMI must be secured
Devices with IPMI exposed have the potential to be completely compromised at the BMC level.
If hackers access the IPMI, they can reboot the system, install a new OS, and access data, bypassing any operating system control. Since IPMI can also allow remote console access, hackers may also be able to modify the BIOS.
IPMIs typically have default passwords, and they can be obtained from a root-compromised server. If someone gets a hold of these passwords, they can access other hosts in the IPMI managed group.
How to secure IPMI
To prevent unauthorized access and protect critical data, IPMI should be restricted to private management networks only.
If IPMI is not in use and cannot be disabled on your device, or if there is no choice but to run IPMI on a public network, then block its MAC address to limit access to your virtual local access network (VLAN) only. (VLAN is a subnetwork that groups collections of devices on separate physical local area networks, or LANs.)
If you do not intend to use IPMI, assign it a non-routable IP address in an address range that is not used for anything else.
If you do intend to use it and need to do so on your campus network, get a static IP address for it.
IPMI should never be using a public address. Ethernet can also come equipped with IPMI.
IPMI and Trenton Systems
Trenton Systems uses the latest IPMI utilities and has software engineers on staff to bolster our systems' security features to protect critical data at the highest level.
With a shared effort with partners like Insyde who develop the source code, we are able to make quick changes in the BIOS around IPMI and other features per customer requirements.
Want to learn more? Get in touch with our team of experts of craft a customized, USA-made, cybersecure, high-performance compute solution that enables you to ensure optimal performance across all domains of the modern battlespace, no matter where the mission leads.
Source:Share this
- High-performance computers (42)
- Military computers (38)
- Rugged computers (32)
- Cybersecurity (25)
- Industrial computers (25)
- Military servers (24)
- MIL-SPEC (20)
- Rugged servers (19)
- Press Release (17)
- Industrial servers (16)
- MIL-STD-810 (16)
- 5G Technology (14)
- Intel (13)
- Rack mount servers (12)
- processing (12)
- Computer hardware (11)
- Edge computing (11)
- Rugged workstations (11)
- Made in USA (10)
- Partnerships (9)
- Rugged computing (9)
- Sales, Marketing, and Business Development (9)
- Trenton Systems (9)
- networking (9)
- Peripheral Component Interconnect Express (PCIe) (7)
- Encryption (6)
- Federal Information Processing Standards (FIPS) (6)
- GPUs (6)
- IPU (6)
- Joint All-Domain Command and Control (JADC2) (6)
- Server motherboards (6)
- artificial intelligence (6)
- Computer stress tests (5)
- Cross domain solutions (5)
- Mission-critical servers (5)
- Rugged mini PCs (5)
- AI (4)
- BIOS (4)
- CPU (4)
- Defense (4)
- Military primes (4)
- Mission-critical systems (4)
- Platform Firmware Resilience (PFR) (4)
- Rugged blade servers (4)
- containerization (4)
- data protection (4)
- virtualization (4)
- Counterfeit electronic parts (3)
- DO-160 (3)
- Edge servers (3)
- Firmware (3)
- HPC (3)
- Just a Bunch of Disks (JBOD) (3)
- Leadership (3)
- Navy (3)
- O-RAN (3)
- RAID (3)
- RAM (3)
- Revision control (3)
- Ruggedization (3)
- SATCOM (3)
- Storage servers (3)
- Supply chain (3)
- Tactical Advanced Computer (TAC) (3)
- Wide-temp computers (3)
- computers made in the USA (3)
- data transfer (3)
- deep learning (3)
- embedded computers (3)
- embedded systems (3)
- firmware security (3)
- machine learning (3)
- Automatic test equipment (ATE) (2)
- C6ISR (2)
- COTS (2)
- COVID-19 (2)
- Compliance (2)
- Compute Express Link (CXL) (2)
- Computer networking (2)
- Controlled Unclassified Information (CUI) (2)
- DDR (2)
- DDR4 (2)
- DPU (2)
- Dual CPU motherboards (2)
- EW (2)
- I/O (2)
- Military standards (2)
- NVIDIA (2)
- NVMe SSDs (2)
- PCIe (2)
- PCIe 4.0 (2)
- PCIe 5.0 (2)
- RAN (2)
- SIGINT (2)
- SWaP-C (2)
- Software Guard Extensions (SGX) (2)
- Submarines (2)
- Supply chain security (2)
- TAA compliance (2)
- airborne (2)
- as9100d (2)
- chassis (2)
- data diode (2)
- end-to-end solution (2)
- hardware security (2)
- hardware virtualization (2)
- integrated combat system (2)
- manufacturing reps (2)
- memory (2)
- mission computers (2)
- private 5G (2)
- protection (2)
- secure by design (2)
- small form factor (2)
- software security (2)
- vRAN (2)
- zero trust (2)
- zero trust architecture (2)
- 3U BAM Server (1)
- 4G (1)
- 4U (1)
- 5G Frequencies (1)
- 5G Frequency Bands (1)
- AI/ML/DL (1)
- Access CDS (1)
- Aegis Combat System (1)
- Armed Forces (1)
- Asymmetric encryption (1)
- C-RAN (1)
- COMINT (1)
- CPUs (1)
- Cloud-based CDS (1)
- Coast Guard (1)
- Compliance testing (1)
- Computer life cycle (1)
- Containers (1)
- D-RAN (1)
- DART (1)
- DDR5 (1)
- DMEA (1)
- Data Center Modular Hardware System (DC-MHS) (1)
- Data Plane Development Kit (DPDK) (1)
- Defense Advanced Research Projects (DARP) (1)
- ELINT (1)
- EMI (1)
- EO/IR (1)
- Electromagnetic Interference (1)
- Electronic Warfare (EW) (1)
- FIPS 140-2 (1)
- FIPS 140-3 (1)
- Field Programmable Gate Array (FPGA) (1)
- Ground Control Stations (GCS) (1)
- Hardware-based CDS (1)
- Hybrid CDS (1)
- IES.5G (1)
- ION Mini PC (1)
- IP Ratings (1)
- IPMI (1)
- Industrial Internet of Things (IIoT) (1)
- Industry news (1)
- Integrated Base Defense (IBD) (1)
- LAN ports (1)
- LTE (1)
- Life cycle management (1)
- Lockheed Martin (1)
- MIL-S-901 (1)
- MIL-STD-167-1 (1)
- MIL-STD-461 (1)
- MIL-STD-464 (1)
- MOSA (1)
- Multi-Access Edge Computing (1)
- NASA (1)
- NIC (1)
- NIC Card (1)
- NVMe (1)
- O-RAN compliant (1)
- Oil and Gas (1)
- Open Compute Project (OCP) (1)
- OpenRAN (1)
- P4 (1)
- PCIe card (1)
- PCIe lane (1)
- PCIe slot (1)
- Precision timestamping (1)
- Product life cycle (1)
- ROM (1)
- Raytheon (1)
- Remotely piloted aircraft (RPA) (1)
- Rugged computing glossary (1)
- SEDs (1)
- SIM Card (1)
- Secure boot (1)
- Sensor Open Systems Architecture (SOSA) (1)
- Small form-factor pluggable (SFP) (1)
- Smart Edge (1)
- Smart NIC (1)
- SmartNIC (1)
- Software-based CDS (1)
- Symmetric encryption (1)
- System hardening (1)
- System hardening best practices (1)
- TME (1)
- Tech Partners (1)
- Total Memory Encryption (TME) (1)
- Transfer CDS (1)
- USB ports (1)
- VMEbus International Trade Association (VITA) (1)
- Vertical Lift Consortium (VLC) (1)
- Virtual machines (1)
- What are embedded systems? (1)
- Wired access backhaul (1)
- Wireless access backhaul (1)
- accredidation (1)
- aerospace (1)
- air gaps (1)
- airborne computers (1)
- asteroid (1)
- authentication (1)
- autonomous (1)
- certification (1)
- cognitive software-defined radios (CDRS) (1)
- command and control (C2) (1)
- communications (1)
- cores (1)
- custom (1)
- customer service (1)
- customer support (1)
- data linking (1)
- data recording (1)
- ethernet (1)
- full disk encryption (1)
- hardware monitoring (1)
- heat sink (1)
- hypervisor (1)
- in-house technical support (1)
- input (1)
- integrated edge solution (1)
- international business (1)
- licensed spectrum (1)
- liquid cooling (1)
- mCOTS (1)
- microelectronics (1)
- missile defense (1)
- mixed criticality (1)
- moving (1)
- multi-factor authentication (1)
- network slicing (1)
- neural networks (1)
- new headquarters (1)
- next generation interceptor (1)
- non-volatile memory (1)
- operating system (1)
- output (1)
- outsourced technical support (1)
- post-boot (1)
- pre-boot (1)
- private networks (1)
- public networks (1)
- radio access network (RAN) (1)
- reconnaissance (1)
- secure flash (1)
- security (1)
- self-encrypting drives (SEDs) (1)
- sff (1)
- software (1)
- software-defined radios (SDRs) (1)
- speeds and feeds (1)
- standalone (1)
- storage (1)
- systems (1)
- tactical wide area networks (1)
- technical support (1)
- technology (1)
- third-party motherboards (1)
- troposcatter communication (1)
- unlicensed spectrum (1)
- volatile memory (1)
- vpx (1)
- zero trust network (1)
- November 2024 (1)
- October 2024 (1)
- August 2024 (1)
- July 2024 (1)
- May 2024 (1)
- April 2024 (3)
- February 2024 (1)
- November 2023 (1)
- October 2023 (1)
- July 2023 (1)
- June 2023 (3)
- May 2023 (7)
- April 2023 (5)
- March 2023 (7)
- December 2022 (2)
- November 2022 (6)
- October 2022 (7)
- September 2022 (8)
- August 2022 (3)
- July 2022 (4)
- June 2022 (13)
- May 2022 (10)
- April 2022 (4)
- March 2022 (11)
- February 2022 (4)
- January 2022 (4)
- December 2021 (1)
- November 2021 (4)
- September 2021 (2)
- August 2021 (1)
- July 2021 (2)
- June 2021 (3)
- May 2021 (4)
- April 2021 (3)
- March 2021 (3)
- February 2021 (8)
- January 2021 (4)
- December 2020 (5)
- November 2020 (5)
- October 2020 (4)
- September 2020 (4)
- August 2020 (6)
- July 2020 (9)
- June 2020 (11)
- May 2020 (13)
- April 2020 (8)
- February 2020 (1)
- January 2020 (1)
- October 2019 (1)
- August 2019 (2)
- July 2019 (2)
- March 2019 (1)
- January 2019 (2)
- December 2018 (1)
- November 2018 (2)
- October 2018 (5)
- September 2018 (3)
- July 2018 (1)
- April 2018 (2)
- March 2018 (1)
- February 2018 (9)
- January 2018 (27)
- December 2017 (1)
- November 2017 (2)
- October 2017 (3)
Comments (4)